

a joint project of

BMS . . .

- a graduate school in mathematics
- leads students to a PhD
- founded in Summer 2006
- funded by "Excellence Initiative"
- based on broad expertise in mathematics in Berlin

BMS offers ...

- structured Ph.D. program taught in English
- joint Friday colloquia with distinguished guest speakers
- soft skills training
- mentoring for all students
- etc.

BMS offers ...

- first-rate graduate studies environment
- access to research groups at three universities
- access to the program and scholarships of
 - 4 DFG Research Training Groups and
 - 2 International Max Planck Research Schools

BMS aims to have...

- 50% female students
- 50% foreign students
- an incoming cohort of 40 in each Phase starting 2008/09

BMS Scholarships

- Phase I
 - 800 €/month for 18 months
 - for 50% of incoming cohort
- Phase II
 - 1350€/month for 24 months
 - for 25% of incoming cohort
- Other types of funding available for Phase II, e.g. RTGs
- Extra funding for student parents (150€/month)

BMS Research Areas

- 1. Analysis, geometry, and mathematical physics
- 2. Algebraic and arithmetic geometry, number theory
- 3. Probability, statistics, and financial mathematics
- 4. Discrete mathematics and optimization
- 5. Visualization and geometric processing
- 6. Numerical mathematics and scientific computing
- 7. Mathematical modeling and applied analysis

Set-Up: Study Program

Phase I			Phase II							
1	2	3	4	5	6	7	8			
Basic courses		Advanced courses								
			Qualifying exam	Thesis research (e.g., in RTG)						

Study Program for Phase I

- Entrance level: Bachelor's degree
- Usually three semesters
- At least five basic courses
- At least two advanced courses, including a seminar course
- BMS colloquium/seminar on Fridays
- End with qualifying exam to enter Phase II

BMS Basic Courses

- [1] Differential geometry, global analysis, and topology
 - Analysis and geometry on manifolds
 - Surface theory
- [2] Algebra and number theory, algebraic and arithmetic geometry
 - Commutative algebra
 - Algebraic geometry
- [3] Probability theory and financial mathematics
 - Stochastic processes I: Discrete time
 - Stochastic processes II: Continuous time
- [4] Discrete mathematics and discrete geometry
 - Combinatorics
 - Geometry

BMS Basic Courses

[5] Linear, nonlinear, and combinatorial optimization

- Linear and integer programming
- Nonlinear optimization
- [6] Numerical analysis, scientific computing, and visualization
 - Numerical methods for ODEs and numerical linear algebra
 - Numerical methods for PDEs
- [7] Applied analysis, mathematical physics, and dynamical systems
 - Dynamical systems
 - Partial differential equations
 - Additional courses
 - Complex analysis
 - Functional analysis
 - Topology

Study Program for Phase II

- Entrance level: Qualifying exam or Master's degree
- Thesis advisor and separate mentor
- Four to six semesters
- Thesis work, integrated in research group
- One advanced course per semester
- BMS Fridays

BMS Advanced Courses

- [1] Differential geometry, global analysis, and topology
 - Global concepts in geometry (Baum, Ecker, Friedrich, Huisken, Schüth)
 - Special Topics in geometric analysis (Ecker, Huisken)
 - Differential geometry and integrable systems (Bobenko, Pinkall)
 - Knot theory (Sullivan)
 - Gauge field theory, spin geometry, and Dirac operators (Baum, Friedrich)
 - Spectral and index theory of geometric operators (Brüning, Schüth)
 - Lie groups and Lie algebras (Baum, Friedrich, Schüth)
 - Symplectic geometry and topology (Mohnke)

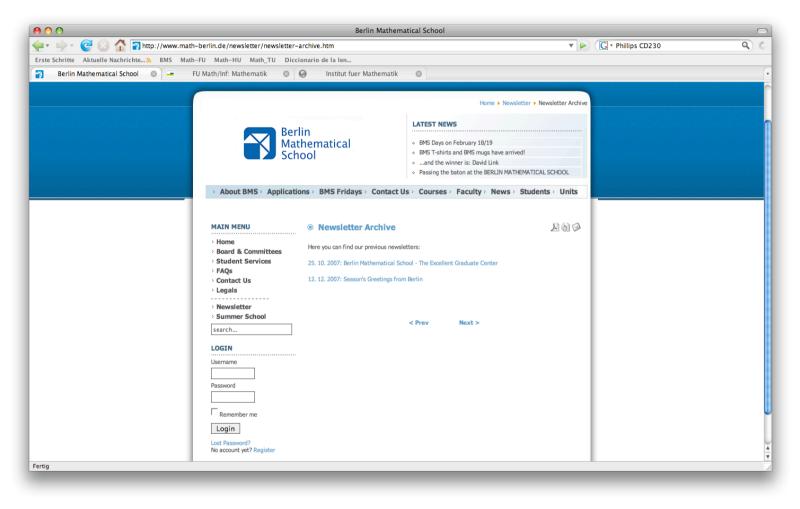
Seminars and Colloquia

- [1] Differential geometry, global analysis, and topology
 - Colloquium of the Collaborative Research Center "Space, Time, Matter" (HU, FU, AEI)
 - Seminar of the DFG Research Group "Polyhedral Surfaces" (TU)
 - Oberseminar
 "Differential geometry" (TU)
 - Research seminar
 "Differential geometry and global analysis" (HU)
 - Research seminar
 "Analysis, geometry, and physics" (FU)
 - Seminar of the International RTG "Arithmetic and Geometry" (HU)

Phase I and II yield the BMS

Phase I			Phase II						
1	2	3	4	5	6	7	8		
	Drogram for Ph Entrance level Usually three s At least five ba At least two ac including a sel BMS colloquiu Fridays	: Bachelor semesters asic courses dvanced cours minar course		En ma Th Fo Th gro On	gram for Phas trance level: (asters/diploma esis advisor a ur to six seme esis work, inte oup le advanced o IS Fridays	Qualifying exa and separate esters egrated in res	mentor search		

BMS Fridays



- BMS colloquium, including
 - Sonia Kovalevskaya Colloquia
 - Mathematics as a Whole lectures
- BMS surveys seminar
- Special activities, "soft skills" training seminars
 - on writing
 - on speaking
 - on reviewing
 - ...
- Tea

BMS Website

Thank you for your attention!

Contact:

BERLIN MATHEMATICAL SCHOOL One-Stop Office office@math-berlin.de http://www.math-berlin.de

Nadja Wisniewski wisniewski@math.tu-berlin.de

Mariusz Szmerlo