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Cost Sharing Model

Setting:

⊲ service provider offers some service

⊲ set U of potential users, interested in service

⊲ cost function C : 2U → R
+

C (S) = optimal cost to serve user-set S ⊆ U

⊲ every user i ∈ U:
◮ has a (private) valuation vi ≥ 0 for receiving the service
◮ announces bid bi ≥ 0, the maximum amount he is willing to pay for

the service
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Cost Sharing Mechanism

Cost sharing mechanism M :

⊲ collects all bids (bi)i∈U from users

⊲ based on these bids:
◮ decides a set Q ⊆ U of users that receive service
◮ computes (approximate) solution for Q of cost C̄(Q)
◮ determines a cost share ξi (Q) ≤ bi for every user i ∈ Q
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Cost Sharing Mechanism

Cost sharing mechanism M :

⊲ collects all bids (bi)i∈U from users

⊲ based on these bids:
◮ decides a set Q ⊆ U of users that receive service
◮ computes (approximate) solution for Q of cost C̄(Q)
◮ determines a cost share ξi (Q) ≤ bi for every user i ∈ Q

Strategic behaviour: every user i ∈ U acts selfishly and attempts to
maximize his utility:

⊲ utility ui := vi − ξi(Q) if served, ui := 0 otherwise

⊲ user manipulates mechanism if advantageous by misreporting his
valuation, i.e., bi 6= vi
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Truthfulness

Strategyproofness: utility of every user i ∈ U is maximized if he bids
truthfully bi = vi , independently of other users
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Truthfulness

Strategyproofness: utility of every user i ∈ U is maximized if he bids
truthfully bi = vi , independently of other users

Group-strategyproofness: same holds true even if users form coalitions
and coordinate their biddings
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Illustration: Group-strategyproofness
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Objectives

β-budget balance: cost shares approximate servicing cost

C̄ (Q) ≤
∑

i∈Q

ξi(Q) ≤ β · C (Q), β ≥ 1
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Social cost: define minimum social cost

Π∗ := min
S⊆U

{

∑
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Objectives

β-budget balance: cost shares approximate servicing cost

C̄ (Q) ≤
∑

i∈Q

ξi(Q) ≤ β · C (Q), β ≥ 1

Social cost: define minimum social cost

Π∗ := min
S⊆U

{

∑

i /∈S

vi + C (S)
}

α-approximate: computed solution approximates social cost

∑

i /∈Q

vi + C̄ (Q) ≤ α · Π∗, α ≥ 1
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Moulin’s Framework

Moulin mechanism M(ξ):

1: Initialize: Q ← U

2: If for each user i ∈ Q: ξi(Q) ≤ bi then STOP
3: Otherwise, remove from Q all users with ξi(Q) > bi and repeat
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Moulin’s Framework

Moulin mechanism M(ξ):

1: Initialize: Q ← U

2: If for each user i ∈ Q: ξi(Q) ≤ bi then STOP
3: Otherwise, remove from Q all users with ξi(Q) > bi and repeat

Thm: If ξ is cross-monotonic and β-budget balanced, then the
Moulin mechanism M(ξ) is group-strategyproof and β-budget
balanced.

[Moulin, Shenker ’01]
[Jain, Vazirani ’01]
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Moulin Mechanisms: Known Results I

Upper bounds β
[Moulin, Shenker ’01] submodular cost 1
[Jain, Vazirani ’01] minimum spanning tree 1

Steiner tree and TSP 2
[Pal, Tardos ’03] facility location 3

single-commodity rent-or-buy 15
[Leonardi, S. ’03], [Gupta et al. ’03] single-commodity rent-or-buy 4
[Leonardi, S. ’03] connected facility location 30
[Könemann, Leonardi, S. ’05] Steiner forest 2
[Gupta et al. ’07] price-collecting Steiner forest 3
[Bleischwitz, Monien ’07] makespan scheduling 2

Lower bounds β
[Immorlica et al. ’05] set cover, edge cover Ω(n)

facility location 3
[Könemann et al. ’05] Steiner forest 2
[Bleischwitz, Monien ’07] makespan scheduling 2
[Brenner, S. ’07] completion time scheduling, etc. Ω(n)
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Moulin Mechanisms: Known Results II

β α
[Roughgarden, Sundararajan ’06] submodular cost 1 Θ(log n)

Steiner tree 2 Θ(log2 n)
[Chawla, Roughgarden, Sundararajan ’06] Steiner forest 2 Θ(log2 n)
[Roughgarden, Sundararajan ’07] facility location 3 Θ(log n)

SRoB 4 Θ(log2 n)
[Gupta et al. ’07] price-collecting SF 3 Θ(log2 n)
[Brenner, S. ’07] makespan scheduling 2 Θ(log n)

cost-stable problems Ω(log n)
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Limitations and New Trade-offs

Group-strategyproofness:

⊲ very strong notion of truthfulness

⊲ often bottleneck in achieving good performance guarantees

⊲ strong lower bounds exist, even if we allow exponential time
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Limitations and New Trade-offs

Group-strategyproofness:

⊲ very strong notion of truthfulness

⊲ often bottleneck in achieving good performance guarantees

⊲ strong lower bounds exist, even if we allow exponential time

Idea: use (slightly) weaker notion of group-strategyproofness:
weak group-strategyproofness [Mehta et al. ’07]
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Illustration: Weak Group-strategyproofness

utility

users
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Singleton Mechanisms

Offer function: Let τ : U × 2U → R
+ be an offer function

τ(i , S) = offer time of user i with respect to S ⊆ U
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Singleton Mechanisms

Offer function: Let τ : U × 2U → R
+ be an offer function

τ(i , S) = offer time of user i with respect to S ⊆ U

Singleton offer function: for every subset S ⊆ U and for every two
users i , j ∈ S : τ(i , S) 6= τ(j , S)

Singleton mechanism M(ξ, τ):

1: Initialize: Q ← U

2: If for each user i ∈ Q: ξi(Q) ≤ bi then STOP
3: Otherwise: Among all users in S with ξi(S) > bi , let i∗ be the one

with minimum offer time τ(i , S). Remove i∗ from Q and repeat.
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Approximation Algorithm → Singleton Mechanism

Thm: Let ALG be a ρ-approximation algorithm that satisfies certain
conditions. Then ALG can be turned into a singleton mechanism that
is weakly group-strategyproof and ρ-budget balanced.

[Brenner, S. ’08]
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Consistency & τ -increasing

Consistent singleton offer function: for every T ⊆ S :

(τ(·, S) order)
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Consistency & τ -increasing

Consistent singleton offer function: for every T ⊆ S :

(τ(·, T ) order)T 1 2 3 9 8 5 6

(τ(·, S) order)

S

T

(τ(·, S) order)

5 98
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6
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τ -increasing: ALG is τ -increasing if for every S ⊆ U and every i ∈ S :

ξi(S) := C̄ (Si)− C̄ (Si−1) ≥ 0,

where Si is the set of the first i elements of S (ordered according to
τ(·, S)).
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Example I

Problem: parallel machines, no preemption, minimize makespan

Offer function: order jobs by non-increasing processing times
(Graham’s rule)

Thm: There is a singleton mechanism that is weakly
group-strategyproof and 4/3-budget balanced.

Contrast: lower bound for Moulin mechanisms: 2 (budget balance)
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Example II

Problem: parallel machines, no preemption, minimize sum of weighted
completion times

Offer function: order jobs by non-increasing weight per processing
time (Smith’s rule)

Thm: There is a singleton mechanism that is weakly
group-strategyproof, 1.21-budget balanced, and 2.42-approximate.

Contrast: lower bound for Moulin mechanisms: Ω(n) (budget
balance)
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Example III

Problem: single machine, release dates, preemption, minimize sum of
completion times

Offer function: order jobs by increasing completion times in the
shortest remaining processing time schedule

Thm: There is a singleton mechanism that is weakly
group-strategyproof, 1-budget balanced, and 4-approximate.

Contrast: lower bound for Moulin mechanisms: Ω(n) (budget
balance)
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Concluding Remarks

⊲ developed framework to convert approximation algorithms into
weakly group-strategyproof mechanisms (if only some mild
conditions are satisfied)
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Concluding Remarks

⊲ developed framework to convert approximation algorithms into
weakly group-strategyproof mechanisms (if only some mild
conditions are satisfied)

⊲ slightly relaxed notion of truthfulness leads to significant
improvement in performance guarantees; still allowing coalitions

⊲ framework yields good approximation ratios in scheduling context

⊲ by-product: obtain approximation algorithms for respective
scheduling problems with rejection

Thank you!
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