

Truthful Mechanisms for Scheduling Problems Project B16: Mechanisms for Network Design Problems

> Guido Schäfer Technische Universität Berlin

joint work with Janina Brenner

DFG Research Center MATHEON Mathematics for key technologies

ICM/MATHEON Workshop, Warsaw, February 21–22, 2008

Algorithmic Game Theory

Algorithmic Game Theory

Algorithmic Game Theory

Cost sharing model, objectives, truthfulness

Moulin mechanisms

- mechanism
- state of affairs
- limitations and new trade-offs
- Singleton mechanisms
 - mechanism
 - framework: approximation algorithm \rightarrow singleton mechanism
 - three example applications
- 4 Concluding Remarks

Setting:

- service provider offers some service
- \triangleright set *U* of potential users, interested in service
- \triangleright cost function $C: 2^U \to \mathbb{R}^+$

C(S) =optimal cost to serve user-set $S \subseteq U$

- ▷ every user $i \in U$:
 - ▶ has a (private) valuation $v_i \ge 0$ for receiving the service
 - ▶ announces bid $b_i \ge 0$, the maximum amount he is willing to pay for the service

Cost sharing mechanism M:

- ▷ collects all bids $(b_i)_{i \in U}$ from users
- based on these bids:
 - decides a set $Q \subseteq U$ of users that receive service
 - computes (approximate) solution for Q of cost $\overline{C}(Q)$
 - determines a cost share $\xi_i(Q) \leq b_i$ for every user $i \in Q$

Cost sharing mechanism M:

- ▷ collects all bids $(b_i)_{i \in U}$ from users
- based on these bids:
 - decides a set $Q \subseteq U$ of users that receive service
 - computes (approximate) solution for Q of cost $\overline{C}(Q)$
 - determines a cost share $\xi_i(Q) \leq b_i$ for every user $i \in Q$

Strategic behaviour: every user $i \in U$ acts selfishly and attempts to maximize his utility:

- ▷ utility $u_i := v_i \xi_i(Q)$ if served, $u_i := 0$ otherwise
- ▷ user manipulates mechanism if advantageous by misreporting his valuation, i.e., $b_i \neq v_i$

Strategyproofness: utility of every user $i \in U$ is maximized if he bids truthfully $b_i = v_i$, independently of other users

Strategyproofness: utility of every user $i \in U$ is maximized if he bids truthfully $b_i = v_i$, independently of other users

Group-strategyproofness: same holds true even if users form coalitions and coordinate their biddings

β -budget balance: cost shares approximate servicing cost

$$ar{\mathcal{C}}(\mathcal{Q}) \leq \sum_{i \in \mathcal{Q}} \xi_i(\mathcal{Q}) \leq eta \cdot \mathcal{C}(\mathcal{Q}), \quad eta \geq 1$$

 β -budget balance: cost shares approximate servicing cost

$$ar{\mathcal{C}}(\mathcal{Q}) \leq \sum_{i \in \mathcal{Q}} \xi_i(\mathcal{Q}) \leq eta \cdot \mathcal{C}(\mathcal{Q}), \quad eta \geq 1$$

Social cost: define minimum social cost

$$\Pi^* := \min_{S \subseteq U} \left\{ \sum_{i \notin S} v_i + C(S) \right\}$$

 β -budget balance: cost shares approximate servicing cost

$$ar{\mathcal{C}}(\mathcal{Q}) \leq \sum_{i \in \mathcal{Q}} \xi_i(\mathcal{Q}) \leq eta \cdot \mathcal{C}(\mathcal{Q}), \quad eta \geq 1$$

Social cost: define minimum social cost

$$\Pi^* := \min_{S \subseteq U} \Big\{ \sum_{i \notin S} v_i + C(S) \Big\}$$

 α -approximate: computed solution approximates social cost

$$\sum_{i \notin Q} \mathsf{v}_i + \bar{\mathsf{C}}(\mathsf{Q}) \le lpha \cdot \mathsf{\Pi}^*, \quad lpha \ge 1$$

Moulin mechanism $M(\xi)$:

- 1: Initialize: $Q \leftarrow U$
- 2: If for each user $i \in Q$: $\xi_i(Q) \leq b_i$ then STOP
- 3: Otherwise, remove from Q all users with $\xi_i(Q) > b_i$ and repeat

Moulin mechanism $M(\xi)$:

- 1: Initialize: $Q \leftarrow U$
- 2: If for each user $i \in Q$: $\xi_i(Q) \leq b_i$ then STOP
- 3: Otherwise, remove from Q all users with $\xi_i(Q) > b_i$ and repeat

Thm: If ξ is cross-monotonic and β -budget balanced, then the Moulin mechanism $M(\xi)$ is group-strategyproof and β -budget balanced.

[Moulin, Shenker '01] [Jain, Vazirani '01]

Moulin Mechanisms: Known Results I

Upper bounds		β
[Moulin, Shenker '01]	submodular cost	1
[Jain, Vazirani '01]	minimum spanning tree	1
	Steiner tree and TSP	2
[Pal, Tardos '03]	facility location	3
	single-commodity rent-or-buy	15
[Leonardi, S. '03], [Gupta et al. '03]	single-commodity rent-or-buy	4
Leonardi, S. '03	connected facility location	30
Könemann, Leonardi, S. '05	Steiner forest	2
[Gupta et al. '07]	price-collecting Steiner forest	3
[Bleischwitz, Monien '07]	makespan scheduling	2

Lower bounds		β
[Immorlica et al. '05]	set cover, edge cover	$\Omega(n)$
	facility location	3
[Könemann et al. '05]	Steiner forest	2
Bleischwitz, Monien '07	makespan scheduling	2
Brenner, S. '07	completion time scheduling, etc.	$\Omega(n)$

		β	α
[Roughgarden, Sundararajan '06]	submodular cost	1	$\Theta(\log n)$
	Steiner tree	2	$\Theta(\log^2 n)$
Chawla, Roughgarden, Sundararajan '06]	Steiner forest	2	$\Theta(\log^2 n)$
Roughgarden, Sundararajan '07]	facility location	3	$\Theta(\log n)$
• • • •	SRoB	4	$\Theta(\log^2 n)$
Gupta et al. '07	price-collecting SF	3	$\Theta(\log^2 n)$
Brenner, S. '07]	makespan scheduling	2	$\Theta(\log n)$
	cost-stable problems		$\Omega(\log n)$

Group-strategyproofness:

- very strong notion of truthfulness
- ▷ often bottleneck in achieving good performance guarantees
- ▷ strong lower bounds exist, even if we allow exponential time

Group-strategyproofness:

- very strong notion of truthfulness
- ▷ often bottleneck in achieving good performance guarantees
- ▷ strong lower bounds exist, even if we allow exponential time

Idea: use (slightly) weaker notion of group-strategyproofness: weak group-strategyproofness [Mehta et al. '07]

Singleton Mechanisms

Offer function: Let $\tau : U \times 2^U \to \mathbb{R}^+$ be an offer function $\tau(i, S) =$ offer time of user *i* with respect to $S \subseteq U$

Offer function: Let $\tau : U \times 2^U \to \mathbb{R}^+$ be an offer function $\tau(i, S) =$ offer time of user *i* with respect to $S \subseteq U$

Singleton offer function: for every subset $S \subseteq U$ and for every two users $i, j \in S$: $\tau(i, S) \neq \tau(j, S)$

Offer function: Let $\tau : U \times 2^U \to \mathbb{R}^+$ be an offer function $\tau(i, S) =$ offer time of user *i* with respect to $S \subseteq U$

Singleton offer function: for every subset $S \subseteq U$ and for every two users $i, j \in S$: $\tau(i, S) \neq \tau(j, S)$

Singleton mechanism $M(\xi, \tau)$:

- 1: Initialize: $Q \leftarrow U$
- 2: If for each user $i \in Q$: $\xi_i(Q) \leq b_i$ then STOP
- 3: Otherwise: Among all users in S with $\xi_i(S) > b_i$, let i^* be the one with minimum offer time $\tau(i, S)$. Remove i^* from Q and repeat.

Thm: Let ALG be a ρ -approximation algorithm that satisfies certain conditions. Then ALG can be turned into a singleton mechanism that is weakly group-strategyproof and ρ -budget balanced.

[Brenner, S. '08]

S
1
2
3
4
5
6
7
8
9
$$(\tau(\cdot, S) \text{ order})$$

T
1
2
3
•
5
6
8
9
 $(\tau(\cdot, S) \text{ order})$

S
1
2
3
4
5
6
7
8
9
$$(\tau(\cdot, S) \text{ order})$$

T
1
2
3
 \bullet
5
6
8
9
 $(\tau(\cdot, S) \text{ order})$

T
1
2
3
9
8
5
6
 $(\tau(\cdot, T) \text{ order})$

S
1
2
3
4
5
6
7
8
9
$$(\tau(\cdot, S) \text{ order})$$

T
1
2
3
 \bullet
5
6
8
9
 $(\tau(\cdot, S) \text{ order})$

T
1
2
3
9
8
5
6
 $(\tau(\cdot, T) \text{ order})$

 τ -increasing: ALG is τ -increasing if for every $S \subseteq U$ and every $i \in S$:

$$\xi_i(S) := \overline{C}(S_i) - \overline{C}(S_{i-1}) \ge 0,$$

where S_i is the set of the first *i* elements of *S* (ordered according to $\tau(\cdot, S)$).

- Problem: parallel machines, no preemption, minimize makespan
- Offer function: order jobs by non-increasing processing times (Graham's rule)
- **Thm:** There is a singleton mechanism that is weakly group-strategyproof and 4/3-budget balanced.
- Contrast: lower bound for Moulin mechanisms: 2 (budget balance)

Problem: parallel machines, no preemption, minimize sum of weighted completion times

Offer function: order jobs by non-increasing weight per processing time (Smith's rule)

Thm: There is a singleton mechanism that is weakly group-strategyproof, 1.21-budget balanced, and 2.42-approximate.

Contrast: lower bound for Moulin mechanisms: $\Omega(n)$ (budget balance)

Problem: single machine, release dates, preemption, minimize sum of completion times

Offer function: order jobs by increasing completion times in the shortest remaining processing time schedule

Thm: There is a singleton mechanism that is weakly group-strategyproof, 1-budget balanced, and 4-approximate.

Contrast: lower bound for Moulin mechanisms: $\Omega(n)$ (budget balance)

 developed framework to convert approximation algorithms into weakly group-strategyproof mechanisms (if only some mild conditions are satisfied)

- developed framework to convert approximation algorithms into weakly group-strategyproof mechanisms (if only some mild conditions are satisfied)
- slightly relaxed notion of truthfulness leads to significant improvement in performance guarantees; still allowing coalitions

- developed framework to convert approximation algorithms into weakly group-strategyproof mechanisms (if only some mild conditions are satisfied)
- slightly relaxed notion of truthfulness leads to significant improvement in performance guarantees; still allowing coalitions
- $\triangleright\,$ framework yields good approximation ratios in scheduling context

- developed framework to convert approximation algorithms into weakly group-strategyproof mechanisms (if only some mild conditions are satisfied)
- slightly relaxed notion of truthfulness leads to significant improvement in performance guarantees; still allowing coalitions
- ▷ framework yields good approximation ratios in scheduling context
- by-product: obtain approximation algorithms for respective scheduling problems with rejection

- developed framework to convert approximation algorithms into weakly group-strategyproof mechanisms (if only some mild conditions are satisfied)
- slightly relaxed notion of truthfulness leads to significant improvement in performance guarantees; still allowing coalitions
- ▷ framework yields good approximation ratios in scheduling context
- by-product: obtain approximation algorithms for respective scheduling problems with rejection

Thank you!