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Albert Einstein:

Theory determines what is observable.

Mathematical theory determines
what can be calculated numerically.

Analysis substantially enlarges the class of
problems that can be simulated efficiently.
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@ Multi-functional materials
© Shape-memory alloys

© Mathematical modeling

@ Mesoscopic evolution model

@ Numerical approximation



Ky 1. Multi-functional materials

Multi-functional materials combine several properties like
> elastic deformation

> magnetization

> polarization

> phase transformations

> electric and electronic properties



Ky 1. Multi-functional materials

Multi-functional materials combine several properties like

elastic deformation

magnetization

>
>
> polarization
> phase transformations
>

electric and electronic properties

Example 1:

piezo-electric effect = nontrivial coupling between
elastic deformation and polarization

~~ use as actuator or sensors



Ky 1. Multi-functional materials

Multi-functional materials combine several properties like

> elastic deformation

> magnetization

> polarization

> phase transformations

> electric and electronic properties

Example 2:
shape-memory effect = nontrivial coupling between
elastic deformation and phase transformation



Ky Microstructure in multi-functional materials

The multi-functional behavior
is often generated by
internal microstructure

e.g., in wood

¥ elasticity

@ inflammability
i heat insulation
& water sensitivity

figure removed




Ky Microstructure in multi-functional materials

Steel
outside hard and inside soft

figure removed

Excalibur



Ky Microstructure in multi-functional materials

Steel
outside hard and inside soft

C11 Modeling and optimization
of phase transitions in steel

re removed

C10 Thin-film nanostructures on crystal surfaces

-EEEE quantum dots

C14 Macroscopic models for
precipitation in crystalline solids
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Ay 2. Shape-memory alloys

Shape-memory effect
drastic permanent deformation
~ heating
~ material remembers original shape

Super-elasticity

Stress (1,000 psi)

T T T T T T
2 3 4 5 6 7 8

Nickel-Titan National Ordinace Laboratory 1961 Nitinol Y et S )

e large plateau (constant stresses)
e hysteresis loop (energy absorption)



Ay 2. Shape-memory alloys

Applications of the super-elastic effect in medicine:

stents for blood vessels separators dental braces

r =

EL



Ay 2. Shape-memory alloys

2\

i Deformable airplane wings
# MEMS micro-electronical-mechanical systems
micro-gripper, -pumps, -valves
(without any joint, screw or other disturbing part)

figure removed figure removed
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2. Shape-memory alloys: microstructure

These effects rely on microstructural arrangements of different phases

CuAlNi alloy
(Hornbogen, Bochum) NiMaGa alloy

figure removed

right: austenite
left: twinned martensite

(Chu, James)

austenite = symmetric high-temperature phase
martensite = less symmetric, low temperature phase (several variants)
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Ay 2. Shape-memory alloys: microstructure
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symmetric, high-temperature less symmetric, low temperature
low stresses higher stresses
Austenite two variants of Martensite
Sir W.C. Roberts-Austen (1843-1902) Adolf Martens (1850-1914)
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Ay 2. Shape-memory alloys: twinning

Twinning: layering of two variants of martensite

Austenite, no shear small shear  large shear
0 =

® 9°0°6
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Super-elastic plateau: Easy flipping between the martensite variants.

Shape-memory effect: After heating pure austenite is produced,
which returns into the original shape.
After cooling regularly layered twins reappear while keeping the shape.
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Ky 3. Mathematical modeling

Typical size of specimens: 1mm to 1cm
Typical size of microstructure: 100 nm to 10 um

i
Numerical resolution of microstructure via Finite-Element Methods
impossible or undesirable ( > 1000° elements )

The important quantity is F = V¢ € R3*3, the deformation gradient,
which fluctuates wildly on the (sub-)micron scale

Idea of Ball & James 1987:
Microstructure can be described by a probability distribution:

Gradient Young measure at point x € Q

vol({y € B/(x)| F(y) € A})

p(A) ~ vol(B,() ™ fx € Prob(@)




Ky 3. Mathematical modeling

Characterization of gradient Young measures (~ 1995)

e is possible via quasiconvex functions (difficult, still incomplete)

e laminates (= twins) and sequential laminates are GYMs

If ¢: Q — R3 Lipschitz and Vo(x) € {Fy, F.},
then F1—F, = a® b (rank-one matrix)

AT A 1A A [ T=A] A [1=A
Fi| F> |F1| F2 |F1| F> [Fy| F>




Ky 3. Mathematical modeling

Characterization of gradient Young measures (~ 1995)

e is possible via quasiconvex functions (difficult, still incomplete)

e laminates (= twins) and sequential laminates are GYMs

If ¢: Q — R3 Lipschitz and Vo(x) € {Fy, F.},
then F1—F, = a® b (rank-one matrix)

AT A 1A A [ T=A] A [1=A

F1 F2 F1 F2 F1 F2 F1 F2 IU’X = >\5F1 + (1_)\)6’:2
Gradients F € R lie in a 9-dimensional linear space
Simple laminates lie in a nonlinear 15-dimensional manifold

[ F1, F2 € R¥*3 with rank(F1—F2) =1 and A € (0,1) ]



Ky 3. Mathematical modeling

Sequential laminates
(F1, F>) laminate with average F = AF; + (1-)\)F>

Each gradient is split again into a laminate:
F—)\F11+1 )\ Jz,rank( Fjl)—l)\E[Ol]

m

Double laminates lie in a nonlinear manifold of dimension
= 94+6+(6+6) = 27

figure

removed
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Ky 3. Mathematical modeling

Sequential laminates
(F1, F>) laminate with average F = AF; + (1-)\)F>

Each gradient is split again into a laminate:
Fj = )\ij,l + (1_>\j)Fj,2y I’ank(FJ"Q—Fj"l) = 1, )\j < [0, 1]

o 2

Instead of linear 100®° unknowns in FEM for microstructure
one can use 27 nonlinear unknowns obtained from analysis.

figure

removed
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3. Mathematical modeling: mixture function

For each pure phase ¢j € Z,ye = {e1,...,en} C RV
there is given a stored-energy density W(F,¢).
Z = conv(Z,) Gibbs simplex of possible mixtures of phases

Mixture function W : R3® x Z - R [M.&Theil'02]
(also called free-energy of mixing by Govindjee&Hackl'07)

W(F,z) = min fR3X3XzPW(G,E) u(dG,dz)

over i € ProbSYM(R3*3 % 7.} with [.3.3.,(G,Z)u(dG,dz)=(F,z
P R3%3 x 7

W must be evaluated numerically using laminates or FEM, see
MATHEON C13: Adaptive simul. of PT in solid mech. (C. Carstensen) or

Institute of Fundamental Technol. Research, Polish Acad. Sci., Warszawa
H. Petryk, S. Stupkiewicz



Ky 4. Mesoscopic evolution model

Statics is quite well understood:

@ using calculus of variations (Weierstral' priniple)

& energy minimizers

@ starting from Ball&James there are now more than 1000 papers

What about models for evolution of
microstructure ?
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Ky 4. Mesoscopic evolution model

State g = (¢, z) € Q = F x Z state space

Energy storage functional
E(t,d,2) = o W(x,V(x),2(x)) + p|Vz(x)|*dx — (((t), ¢)

Dissipation distance
D Zolda Znew fQ X, Zold Znew(X))dX

Energetic formulation for rate-independent systems.
A function g : [0, T] — Q is called energetic solution, if for all
t € [0, T] global stability (S) and energy balance (E) hold:

(S) E&(t,q(t)) <&(t,9) +D(g(t),q) for all g € Q;
(E) &(t,q(t))+Dissp(q, [0, £]) = £(0, q(0))+ Jy 0:E(s, q(s))ds

Existence theory developed in C18 by M&Petrov and coworkers.
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Ay 5. Numerical approximation

Joint work with Krucik & Roubicek [Meccanica'05, M2AN'08]:

CuAlINi with cubic-to-orthorhombic phase transformation
Wi(F)= Y F'F-U)):C;:(FTF-U))+~ (j=1,..,7)

with experimental values for ~;, U;, C; from experiments by Sittner

Problem: mixture function W is not known.

Go back and use gradient Young measures!!
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Ay 5. Numerical approximation

Joint work with Krucik & Roubicek [Meccanica'05, M2AN'08]:

CuAlINi with cubic-to-orthorhombic phase transformation

Wi(F)= Y F'F-U)):C;:(FTF-U))+~ (j=1,..,7)

with experimental values for ~;, U;, C; from experiments by Sittner
State space Q involving gradient Young measures:
Mesoscopic phase indicator z = A(F) with continuous A : R¥3 — 7

0 = {(¢, n,2) € WHH(Q)xGYM4(2; R¥3)xLY(Q) |
Vo =idepu,z = Neys a.e. }
where (®ep)(x) = [raxs P(x, F)u(x,dF)
E(t,q) = Jo(Wep)(x) + p|Vz|*dx — ((t), b)

Existence of energetic solutions for (Q, £ D) can be shown.
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Ay 5. Numerical approximation

@ time discretization 0 = to < ) < --- < ty_1 <ty =T
@ triangulation 7}, of domain Q C R3
@ lamination level x = 2 (double laminates)

ﬁwmw%—{ «zpus?)c»m\éj -8 )F,

Numerical phase space QO
= { (¢.1.2) € WH(Q)GYMY,, (U R xLH(Q) |

V¢ =ideu, z="Aett, 11,z pw. const. on 7, }
Penalized energy
Ex(t:0) = Jo (Won)(x)+p|Vz1*) dx+ 3 [Aou—z [ 1 ) = (£(2). &)
Dissipation D as above
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Ay 5. Numerical approximation

Discrete time-incremental minimization problems
J=1,...,N: gnjs € Argmin{ &(t;, q) +D(qnj-16,9) | 9 € Qnr }

For max{ tj—t,_y |k =1,...,N} — 0, 6, h — 0 with h € (0, H(9)]
& we have uniform a priori bounds,

@ we find limit points in the associated weak topologies,

@ a general abstract [-convergence theorem is applicable.

Theorem (M&Roubicek&Stefanelli’07/'08):
Numerics converges to an energetic solution (Q, &, D)
(after choosing subsequences, due to non-uniqueness)
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Ay 5. Numerical approximation

Numerical example: cyclic compression test
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We see nontrivial hysteresis through sesqui-laminates:
Austenite is laminated with twinned (M., M3).
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% Conclusions

> Analytical multiscale modeling leads to
well-posed mesoscopic models.

> A dramatic reduction of unknowns is possible
by giving up the linear FE structure.

> Applied analysis can identify new mesoscopic quantities, which
e behave well in the upscaling procedure and
e faithfully describe the effects of the microstructure.

> Nonlinear analysis may contribute substantially to
the progress in simulation of complex systems.

Thank you for your attention !

Papers online under wuw.wias-berlin.de/people/mielke
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