

Modeling of multifunctional materials how to describe evolving microstructures in solids

Alexander Mielke

Weierstraß-Institut für Angewandte Analysis und Stochastik

DFG Research Center MATHEON Mathematics for key technologies

Workshop "Mathematics for Key Technologies and Innovation", Warszawa, 21 lutego 2008

Albert Einstein:

Theory determines what is observable.

Mathematical theory determines what can be calculated numerically.

Analysis substantially enlarges the class of problems that can be simulated efficiently.

Mathematical Fields	I	II	
	Optimiz.	Numerics	Applied &
Application Area	discr.math.	sci.comp.	stoch. <mark>anal</mark> .
A Life sciences			
B Logistics, traffic, telecomm.			
C Production			
D Circuit sim., opto-electronics			
E Finance			
F Visualization			
G Education, Outreach, Adm.			

Intersection of Numerical and Applied Analysis and Multifunctional Materials

- Shape-memory alloys
- Mathematical modeling
- Mesoscopic evolution model
- 5 Numerical approximation

Multi-functional materials combine several properties like

- elastic deformation
- magnetization
- polarization
- phase transformations
- electric and electronic properties

Multi-functional materials combine several properties like

- elastic deformation
- magnetization
- ▷ polarization
- phase transformations
- electric and electronic properties

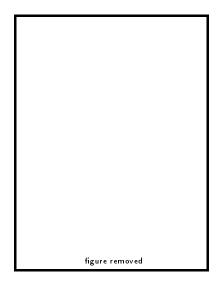
Example 1: piezo-electric effect = nontrivial coupling between elastic deformation and polarization \rightarrow use as actuator or sensors

Multi-functional materials combine several properties like

- elastic deformation
- magnetization
- polarization
- phase transformations
- electric and electronic properties

Example 2: shape-memory effect = nontrivial coupling between elastic deformation and phase transformation

- The multi-functional behavior is often generated by **internal microstructure**
- e.g., in wood
- 🔳 elasticity
- 💶 inflammability
- heat insulation
- 🔳 water sensitivity



Microstructure in multi-functional materials

Steel outside hard and inside soft

figure removed

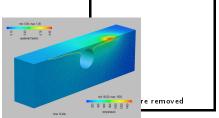
Excalibur

Microstructure in multi-functional materials

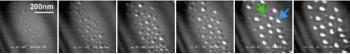
Steel

outside hard and inside soft

C11 Modeling and optimization of phase transitions in steel



C10 Thin-film nanostructures on crystal surfaces



quantum dots

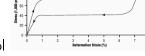
C14 Macroscopic models for precipitation in crystalline solids

Shape-memory effect drastic permanent deformation ~ heating ~ material remembers original shape

Super-elasticity

Nickel-Titan National Ordinace Laboratory 1961

Nitinol



- large plateau (constant stresses)
- hysteresis loop (energy absorption)

Applications of the super-elastic effect in medicine:

stents for blood vessels

dental braces

Medical grippers without joints

Deformable airplane wings

figure removed

 MEMS micro-electronical-mechanical systems micro-gripper, -pumps, -valves (without any joint, screw or other disturbing part)

These effects rely on microstructural arrangements of different phases

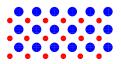
CuAlNi alloy (Hornbogen, Bochum)

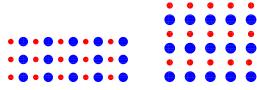
NiMaGa alloy

figure removed

right: austenite left: twinned martensite (Chu, James)

austenite = symmetric high-temperature phase
martensite = less symmetric, low temperature phase (several variants)





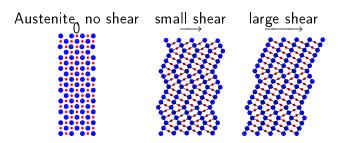
symmetric, high-temperature low stresses

Austenite

Sir W.C. Roberts-Austen (1843-1902)

less symmetric, low temperature higher stresses two variants of **Martensite** Adolf Martens (1850–1914)

Twinning: layering of two variants of martensite



 $\leftarrow \mathsf{martensite} \ \mathsf{layer}$

 $\leftarrow \mathsf{martensite} \ \mathsf{layer}$

Super-elastic plateau: Easy flipping between the martensite variants. Shape-memory effect: After heating pure austenite is produced, which returns into the original shape. After cooling regularly layered twins reappear while keeping the shape.

Typical size of specimens: 1 mm to 1 cmTypical size of microstructure: 100 nm to $10 \mu \text{m}$

Numerical resolution of microstructure via Finite-Element Methods impossible or undesirable ($\geq 1000^3$ elements)

The important quantity is $\mathbf{F} = \nabla \phi \in \mathbb{R}^{3 \times 3}$, the deformation gradient, which fluctuates wildly on the (sub-)micron scale

Idea of Ball & James 1987: Microstructure can be described by a probability distribution: Gradient Young measure at point $x \in \Omega$ $\mu_x(A) \approx \frac{\operatorname{vol}(\{ y \in B_r(x) \mid F(y) \in A \})}{\operatorname{vol}(B_r(x))} \longrightarrow \mu_x \in \operatorname{Prob}(\mathbb{R}^{3 \times 3})$

Characterization of gradient Young measures (~ 1995)
is possible via quasiconvex functions (difficult, still incomplete)
laminates (= twins) and sequential laminates are GYMs

If $\phi : \Omega \to \mathbb{R}^3$ Lipschitz and $\nabla \phi(x) \in \{F_1, F_2\}$, then $F_1 - F_2 = a \otimes b$ (rank-one matrix)

$$\begin{vmatrix} \lambda & |1-\lambda| & \lambda & |1-\lambda| & \lambda & |1-\lambda| & \lambda & |1-\lambda| \\ F_1 & F_2 & F_1 & F_2 & F_1 & F_2 & F_1 & F_2 \\ \end{vmatrix}$$

Characterization of gradient Young measures (~ 1995)
is possible via quasiconvex functions (difficult, still incomplete)
laminates (= twins) and sequential laminates are GYMs

If $\phi : \Omega \to \mathbb{R}^3$ Lipschitz and $\nabla \phi(x) \in \{F_1, F_2\}$, then $F_1 - F_2 = a \otimes b$ (rank-one matrix)

$$\begin{vmatrix} \lambda & | 1 - \lambda & | \lambda & | 1 - \lambda & | \lambda & | 1 - \lambda & | \lambda & | 1 - \lambda \\ F_1 & F_2 & F_1 & F_2 & F_1 & F_2 & F_1 & F_2 \\ \end{vmatrix}$$

$$\mu_{x} = \lambda \delta_{F_{1}} + (1 - \lambda) \delta_{F_{2}}$$

Gradients $F \in \mathbb{R}^{3\times3}$ lie in a 9-dimensional linear space Simple laminates lie in a nonlinear 15-dimensional manifold [$F_1, F_2 \in \mathbb{R}^{3\times3}$ with rank($F_1 - F_2$) = 1 and $\lambda \in (0, 1)$]

Sequential laminates

 $({m F}_1,{m F}_2)$ laminate with average ${m F}=\lambda {m F}_1+(1{-}\lambda){m F}_2$

Each gradient is split again into a laminate: $\mathbf{F}_{j} = \lambda_{j}\mathbf{F}_{j,1} + (1-\lambda_{j})\mathbf{F}_{j,2}$, rank $(\mathbf{F}_{j,2}-\mathbf{F}_{j,1}) = 1$, $\lambda_{j} \in [0, 1]$

Double laminates lie in a nonlinear manifold of dimension = 9+6+(6+6) = 27

Sequential laminates

 $({m F}_1,{m F}_2)$ laminate with average ${m F}=\lambda {m F}_1+(1{-}\lambda){m F}_2$

Each gradient is split again into a laminate: $\mathbf{F}_{j} = \lambda_{j}\mathbf{F}_{j,1} + (1-\lambda_{j})\mathbf{F}_{j,2}$, rank $(\mathbf{F}_{j,2}-\mathbf{F}_{j,1}) = 1$, $\lambda_{j} \in [0, 1]$

Instead of linear 100³ unknowns in FEM for microstructure one can use 27 nonlinear unknowns obtained from analysis.

3. Mathematical modeling: mixture function

For each pure phase $e_j \in Z_{pure} = \{e_1, ..., e_N\} \subset \mathbb{R}^N$ there is given a stored-energy density $W(F, e_j)$. $Z = \operatorname{conv}(Z_p)$ Gibbs simplex of possible mixtures of phases

Mixture function $\mathbb{W} : \mathbb{R}^{3 \times 3} \times Z \to \mathbb{R}$ [M.&Theil'02] (also called free-energy of mixing by Govindjee&Hackl'07) $\mathbb{W}(\boldsymbol{F}, z) = \min \int_{\mathbb{R}^{3 \times 3} \times Z_{p}} \mathcal{W}(\boldsymbol{G}, \widetilde{z}) \, \mu(\mathrm{d}\boldsymbol{G}, \mathrm{d}\widetilde{z})$ over $\mu \in \mathrm{Prob}^{\mathrm{GYM}}(\mathbb{R}^{3 \times 3} \times Z_{p})$ with $\int_{\mathbb{R}^{3 \times 3} \times Z_{p}} (\boldsymbol{G}, \widetilde{z}) \mu(\mathrm{d}\boldsymbol{G}, \mathrm{d}\widetilde{z}) = (\boldsymbol{F}, z)$

W must be evaluated numerically using laminates or FEM, see MATHEON C13: Adaptive simul. of PT in solid mech. (C. Carstensen) or Institute of Fundamental Technol. Research, Polish Acad. Sci., Warszawa H. Petryk, S. Stupkiewicz

Statics is quite well understood:

- using calculus of variations (Weierstraß' priniple)
- energy minimizers
- starting from Ball&James there are now more than 1000 papers

What about models for evolution of microstructure ?

State $q = (\phi, z) \in \mathcal{Q} = \mathcal{F} imes \mathcal{Z}$ state space

Energy storage functional $\mathcal{E}(t,\phi,z) = \int_{\Omega} \mathbb{W}(x, \nabla \phi(x), z(x)) + \rho |\nabla z(x)|^{lpha} dx - \langle \ell(t), \phi \rangle$

Dissipation distance

$$\mathcal{D}(z_{\mathsf{old}}, z_{\mathsf{new}}) = \int_\Omega D(x, z_{\mathsf{old}}(x), z_{\mathsf{new}}(x)) \mathrm{d}x$$

Energetic formulation for rate-independent systems. A function $q : [0, T] \rightarrow Q$ is called *energetic solution*, if for all $t \in [0, T]$ global stability (S) and energy balance (E) hold: (S) $\mathcal{E}(t, q(t)) \leq \mathcal{E}(t, \hat{q}) + \mathcal{D}(q(t), \hat{q})$ for all $\hat{q} \in Q$; (E) $\mathcal{E}(t, q(t)) + \text{Diss}_{\mathcal{D}}(q, [0, t]) = \mathcal{E}(0, q(0)) + \int_{0}^{t} \partial_{s} \mathcal{E}(s, q(s)) ds$.

Existence theory developed in C18 by M&Petrov and coworkers.

Joint work with Kručík & Roubíček [Meccanica'05, M2AN'08]:

CuAlNi with cubic-to-orthorhombic phase transformation $W_j(\mathbf{F}) = \frac{1}{2}(\mathbf{F}^{\mathsf{T}}\mathbf{F} - \mathbf{U}_j):\mathbb{C}_j:(\mathbf{F}^{\mathsf{T}}\mathbf{F} - \mathbf{U}_j) + \gamma_j \quad (j = 1, ..., 7)$ with experimental values for $\gamma_i, \mathbf{U}_i, \mathbb{C}_i$ from experiments by Šittner

Problem: mixture function W is not known.

Go back and use gradient Young measures!!

Joint work with Kručík & Roubíček [Meccanica'05, M2AN'08]:

CuAlNi with cubic-to-orthorhombic phase transformation $W_j(\mathbf{F}) = \frac{1}{2}(\mathbf{F}^{\mathsf{T}}\mathbf{F} - \mathbf{U}_j):\mathbb{C}_j:(\mathbf{F}^{\mathsf{T}}\mathbf{F} - \mathbf{U}_j) + \gamma_j \quad (j = 1, ..., 7)$ with experimental values for $\gamma_j, \mathbf{U}_j, \mathbb{C}_j$ from experiments by Šittner

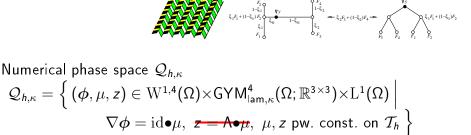
State space Q involving gradient Young measures: Mesoscopic phase indicator $z = \Lambda(F)$ with continuous $\Lambda : \mathbb{R}^{3 \times 3} \to Z$

$$\begin{aligned} \widehat{\mathcal{Q}} &= \left\{ (\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{z}) \in \mathrm{W}^{1,4}(\Omega) \times \mathrm{GYM}^4(\Omega; \mathbb{R}^{3 \times 3}) \times \mathrm{L}^1(\Omega) \; \middle| \\ \nabla \boldsymbol{\phi} &= \mathrm{id} \bullet \boldsymbol{\mu}, \boldsymbol{z} = \Lambda \bullet \boldsymbol{\mu} \text{ a.e.} \right\} \\ & \text{where } (\Phi \bullet \boldsymbol{\mu})(\boldsymbol{x}) = \int_{\mathbb{R}^{3 \times 3}} \Phi(\boldsymbol{x}, \boldsymbol{F}) \boldsymbol{\mu}(\boldsymbol{x}, \mathrm{d} \boldsymbol{F}) \end{aligned}$$

$$\widehat{\mathcal{E}}(t,q) = \int_{\Omega} (W ullet \mu)(x) +
ho |
abla z|^{lpha} \, \mathrm{d}x - \langle \ell(t), \phi
angle$$

Existence of energetic solutions for $(\widehat{\mathcal{Q}}, \widehat{\mathcal{E}}, \mathcal{D})$ can be shown.

- time discretization $0 = t_0 < t_1 < \cdots < t_{N-1} < t_N = T$ ■ triangulation \mathcal{T}_h of domain $\Omega \subset \mathbb{R}^3$
- Implication level $\kappa = 2$ (double laminates)



Penalized energy $\mathcal{E}_{\delta}(t,q) = \int_{\Omega} \left((W \bullet \mu)(x) + \rho |\nabla z|^{\alpha} \right) \mathrm{d}x + \frac{1}{\delta} \| \Lambda \bullet \mu - z \|_{\mathrm{H}^{-1}(\Omega)}^{2} - \langle \ell(t), \phi \rangle$

Dissipation ${\mathcal D}$ as above

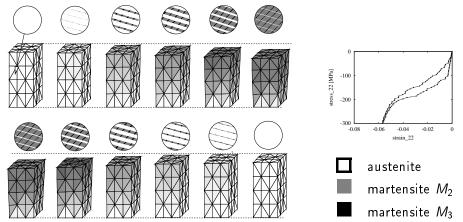
Discrete time-incremental minimization problems $j = 1, ..., N: q_{h,j,\delta} \in \text{Argmin} \{ \mathcal{E}_{\delta}(t_j, q) + \mathcal{D}(q_{h,j-1,\delta}, q) \mid q \in \mathcal{Q}_{h,\kappa} \}$

For max{ $t_j - t_{j-1} | k = 1, ..., N$ } \rightarrow 0, $\delta, h \rightarrow$ 0 with $h \in (0, H(\delta)]$ we have uniform a priori bounds, we find limit points in the associated weak topologies, a general abstract Γ -convergence theorem is applicable.

Theorem (M&Roubíček&Stefanelli'07/'08): Numerics converges to an energetic solution $(\widehat{Q}, \widehat{\mathcal{E}}, \mathcal{D})$ (after choosing subsequences, due to non-uniqueness)

5. Numerical approximation

Numerical example: cyclic compression test



We see nontrivial hysteresis through sesqui-laminates: Austenite is laminated with twinned (M_2, M_3) .

- Analytical multiscale modeling leads to well-posed mesoscopic models.
- A dramatic reduction of unknowns is possible by giving up the linear FE structure.
- > Applied analysis can identify new mesoscopic quantities, which
 - behave well in the upscaling procedure and
 - faithfully describe the effects of the microstructure.
- Nonlinear analysis may contribute substantially to the progress in simulation of complex systems.

Thank you for your attention !

Papers online under www.wias-berlin.de/people/mielke