

Computational Life Sciences at MATHEON

Peter Deuflhard

DFG Research Center MATHEON Mathematics for key technologies

February 21, 2008

- Optimization and discrete mathematics A. Griewank, M. Grötschel, G. M. Ziegler
- II Numerical analysis and scientific computingP. Deuflhard, V. Mehrmann, H. Yserentant
- III Applied and stochastic analysis A. Bovier, A. Mielke

Application Areas

- A Life sciences
 - A. Bockmayr, P. Deuflhard, Ch. Schütte
- B Logistics, traffic, and telecommunication networksM. Grötschel, R. Möhring, M. Skutella
- C Production
 - C. Carstensen, J. Sprekels, F. Tröltzsch
- D Circuit simulation and opto-electronic devicesV. Mehrmann, F. Schmidt
- E Finance
 - A. Bovier, P. Imkeller
- F Visualization
 - K. Polthier, J. Sullivan, G. M. Ziegler
- Z Education, Outreach, Administration
 - J. Kramer

Projects:

- A1: Hyperthermia treatment planning (Deuflhard, Tröltzsch, Weiser)
- ▷ A2: Osteotomic surgery planning (Deuflhard, Kornhuber)
- ▷ A3: Noise Reduction in fMRI (Spokoyni)
- ▷ A4: Towards biomolecular flexibility (Schütte, Deuflhard)
- ▷ A5: Virtual screening by 3D similarity (Hougardy, Prömel)
- ▷ A6: Stochastic modelling in pharmacokinetics (Deuflhard, Schütte)
- A7: Numerical discretization methods in quantum chemistry (Schneider, Yserentant)
- A8: systems biology (Bockmayr)
- A9: Positive descriptor systems (Mehrmann)
- A11: Non-adiabatic effects in molecular dynamics (Lasser)

Regional Hyperthermia:

local tumor heating by radiowave radiation

Aim: optimal control of antennas

Problems:

ns: handling of state constraints perfusion modelling

A1: Multiscale Perfusion Modelling

Large Vessels

- ▷ 3D representation
- advection-diffusion equation

Medium Size Vessels

- ▷ 1D representation
- singular advection
- regional coupling

Capillaries

- no geometry available
- homogenization

Idea: model state constraints by barrier functionals

- homotopy in function space
- inexact Newton path-following
- adaptive multilevel method

Homotopy Path:

- existence and convergence
- Lipschitz continuity

Lavrentiev Regularization: regular Lagrange multipliers

Towards forward dynamics for a human knee joint

- Patient-specific geometry
- Finite element discretization
- Time integration with inequality constraints
 - Energy dissipative
 - No spurious oscillations
- Static two-body contact problems
 - Mortar discretization
 - Parametrized boundaries
 - Multigrid convergence

A2: Time Integration

Newmark schemes for dynamical contact problems

- Improved Newmark scheme [Kane, Repetto, Ortiz, Marsden 99]: Energy dissipative, spurious contact oscillations
- Contact-stabilized Newmark scheme [Deuflhard, Krause, Ertel 06]: Energy dissipative, no spurious contact oscillations

A2: Two-Body Contact Problems

Fast solvers for multi-body contact problems

- > Monotone multigrid: asymptotic multigrid convergence rate
- Nonsmooth Newton multigrid: faster than equivalent linear problem! [Kornhuber, Krause, Sander, Deuflhard, Ertel 06]

A2: Real Knee Anatomy

A2: Knee Climbing Stairs

Example using real-world data

- > Distal femur and proximal tibia from the Visible Human data set
- ▷ Contact between the bones; foundation as rigid obstacle
- \triangleright Three grid levels, pprox 220,000 degrees of freedom

fMRI – functional Magnetic Resonance Imaging

Aim: Noise reduction while preserving shapes of activation areas. Method: Structural adaptive denoising (lower right)

A3: Noise Reduction in DTI

DTI – Diffusion Tensor Imaging

- ▷ Measuring anisotropic diffussion in tissue
- Accurate determination of diagnostic measures ...
- \triangleright ... and fiber tracking!

A5: Virtual Screening by 3D Similarity

Aim: Designing new Drugs

- minimize side effects
- Iower production costs
- sidestep existing patents

Problem: Candidate Search

- screening of drug candidates expensive
- millions of potentially active compounds

Solution: 3D Virtual Screening

computer aided search for good candidates in databases using a sophisticated 3D similarity measure

A5: Computing 3D Molecular Similarity

Superposition by rigid motion, such that

- "many" atoms of both molecules are superimposed
- b distances between superimposed atoms are "small"

maximize score function: $n_s \cdot e^{-rmsd}$

- n_s = fraction of superimposed atoms
- *rmsd* = root mean square distance between superimposed atoms

Hard Computational Problem

- ▷ brute force algorithm on *n* atoms $\Rightarrow 2^{2n} \cdot n!$ operations n = 8: 1 second $n = 16: 10^6 \text{ years}$
- b heuristics fail to find partial similarity

MATHEON Algorithm

- handles multiple conformations and flexibility
- ▷ no heuristic finds optimal solution within seconds
- ▷ optimization of other 3D score functions possible
- ▷ patent pending (Germany and PCT application)

A6: Stochastic Modelling in Pharmacokinetics

Pharmacokinetics:

- Absorption
- Distribution
- Metabolism
- Excretion
- of drugs in the body

Aim: Mathematical modelling and theoretical analysis of pharmacokinetics processes, including variability & uncertainty

A6: Stochastic Modelling in Pharmacokinetics

Emerging interest in advanced in silico approaches to support drug discovery and development

A6: Stochastic Modelling in Pharmacokinetics

Model design: development of consistent and modular pharmacokinetic models

Non-linear sensitivity analysis: analyzing the effects of parameter variability

 $\partial_t u(t) = -\operatorname{div}(F \cdot u(t))$

Hybrid stochastic-deterministic models: coupling pharmacokinetic models to cellular processes

Software: Virtual Lab for Modelling and Simulation in Pharmacokinetics (coop CiT)

Receptor Binding and Recycling

- $\triangleright\,$ FSH and LH bind to their receptors and form a complex
- ▷ The bound receptor becomes phosphorylated, internalized and returns, finally, to unbound state

- The bound receptor activates the enzymes catalyzing the steroidogenesis
- ▷ Clément et al., 2001

A6: Endocrinological Network

Biosynthesis of the Steroids

(KEGG PATHWAY Database)

A6: Endocrinological Network

Model Scheme

- ▷ # DDEs: 43
- \triangleright # Further components: 6
- \triangleright # Parameters: 191

I. Reinecke, P. Deuflhard, 2007

Model Decomposition

- Formulation of the model as graph
- Edge: right hand side of model equation dependent
- ▷ Numbers: components of the model
- ▷ Examples:
 - 8: LH
 - 10: FSH
 - 42: P₄
 - 43: E₂
 - 50: Inhibin

- ▷ In circles: model parts
- ▷ Solid arc: input from other model parts
- Dotted arc: input can be replaced by approximations of experimental data

Model Scheme Including Birth Control Pill

- ▷ # DDEs: 49
- \triangleright # Further components: 6
- ▷ # Parameters: 208

Basis of chemistry: The N-electron Schrödinger equation,

$$\bigg\{-\frac{1}{2}\sum_{i=1}^{N}\Delta_{i}-\sum_{i=1}^{N}\sum_{\nu=1}^{K}\frac{Z_{\nu}}{|x_{i}-a_{\nu}|}+\frac{1}{2}\sum_{i\neq j}\frac{1}{|x_{i}-x_{j}|}\bigg\}\psi = E\psi,$$

for electrons at x_1, \ldots, x_N in \mathbb{R}^3 and fixed nuclei.

The problem: the solutions ψ depend on 3*N* variables!

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

P.A.M. Dirac, 1929

Chemists and physicists

Simplified model with approximations: HF, DFT, MCHF, etc.

MATHEON A7

Develop the mathematical underpinnings for a direct approach:

- > new regularity theory for high-order mixed derivatives,
- ▷ recent advances in high-dimensional approximation theory
- \triangleright computational complexity independent of N !

A8: Systems Biology

Molecular biology: study components of a biological system in isolation

Systems biology: understand how the components interact to perform biological function

- Discrete modeling approach: discrete variables and parameters
- ▷ Logical analysis of the network dynamics ~→ model checking
- Incorporating time constraints

 hybrid discrete/continuous modeling
- Relating topology and dynamics of the network

A8: Metabolic Networks

- Metabolic networks at steady state
- New constraint-based description of the steady flux cone
 - minimal
 - unique
- Applications
 - characterize metabolic behaviors
 - identify reaction dependencies
 - study effect of gene deletion

http://expasy.org/tools/pathways/

A9: Positive Descriptor Systems

We consider positive descriptor systems:

$$F(t, x, \dot{x}, u) = 0, x(t_0) = x_0,$$

$$y = G(x, u).$$

Linearization along constant trajectories leads to:

$$\begin{aligned} E\dot{x} &= Ax + Bu, \ x(t_0) = x_0, \\ y &= Cx. \end{aligned}$$

Positivity

Non-negative state x, input u, output y for all t.

Applications

- Pollutant transport, chemo-taxis
- Pharmacokinetics
- Input-output models (Leontief)
- Population models
- Compartmental systems

Aims

- > Theoretical insight
- ▷ Positivity preserving numerical methods for simulation and control

Aim: Numerical integrators for nucleonic quantum evolution

(First step of vision: isomerisation of retinal in rhodopsin)

Mathematical model: time-dependent Schrödinger systems with avoided and conical eigenvalue crossings,

$$i\hbar\partial_t\psi=-rac{\hbar^2}{2m}\Delta_x\psi+egin{pmatrix} \mathbf{v}_{11}&\mathbf{v}_{12}\ \mathbf{v}_{21}&\mathbf{v}_{22}\end{pmatrix}\psi,\qquad\psi(\mathbf{0})=\psi_\mathbf{0}.$$

Open Problems:

- sampling of highly oscillatory data,
- ▷ resolution of interference effects.

Scientists in charge:

K. Polthier, J. Sullivan, G. M. Ziegler

Topics:

- discrete differential geometry
- geometry processing
- image processing
- virtual reality PORTAL

F2: Atlas-based 3D Image Segmentation

Applications

Geometry Reconstruction from 2D and 3D image data.

Analysis of Shape Variability based on statistical shape models.

Clinical Therapy and Surgery Planning

Outreach

Visualization Laboratory "Studio DaVinci"

public events, student groups, industrial and academic collaborators

Cooperations

MERCURY

neurosurgery, hyperthermia, liver oncology, biomechanics

amira software, segmentation

Sense and simplicity

3D reconstruction from x-ray images

() SYNTHES

surgical toolkit for craniosynostosis

^{AO Foundation} reconstruction of orbital defects