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• detailed mathematical models as a key for understanding and 
mastering complex – engineering – problems

• intelligent algorithms for sophisticated optimization and inverse 
simulation rather than forward simulation

• optimization of dynamical processes: many real world 
engineering problems looking for new mathematical solutions 

• hybrid models: discontinuous dynamics and mixed integer 
optimization and optimal control

• requirements of real-time optimization and control

• experimental design for non-linear dynamical processes,
uncertainties in models

• applications from Joint ICM/IWR Graduate College and the new 
"Heidelberg Graduate School Mathematical and Computational 
Methods for the Sciences"

Overview



Modeling, Simulation and Optimization of 
Engineering Processes



Dynamical Processes

• robots working at an assembly line

• operating a distillation column

• flying a power generating kite

• driving an automobile

• controlling a chemical reactor

• ....

How to choose the decision variables such that the 
system or the process operates optimally?

dynamical processes
in many areas ....



Demand for Optimization is Ubiquitous

• increase productivity

• improve product quality

• conserve resources

• reduce waste

• increase safety 

• reduce experimental costs              

• ....

Important: strict consideration of all kinds of side conditions!



Model-Based Optimization Problems

experimental
design

parameter
estimation

Aims: scientific insight
into process

simulation of
scenarios

process optimization
and control

experimental
data

mathematical
model



The Model Class: (Partial) Differential Algebraic 
Equations

typical properties 

• nonlinear 

• hybrid: state dependent 
discontinuities

• different time scales
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u: control functions, p: system parameters

x „differential“ states
z „algebraic“ states

• ordinary differential 
equations

• mechanical DAE

• reactive flow problems
...

Given an initial state x(t0), z(t0), choose control functions u and 
parameters p in order to minimize some cost function Φ[x,z,u,p] 
subject to state and control constraints Ψ[x,z,u,p] ≥ 0



Example: Time Optimal Robot Motion



elbow robots on an assembly line

• welding
• assembling
• gluing
• transporting

can we speed up 
the bottleneck
maneuvers?



Time Optimal Motion of Robots

Traditional approach:

• move along prescribed simple geometric curves 

• try to avoid dynamic interactions

Time optimal solution:

• make use of nonlinear interactions, i.e.,

• exploit gravity to help start and stop motion 

• reduce or increase inertia and

• produce centrifugal forces to accelerate or 
decelerate rotational motion 

time optimal solutions are up to 3 x faster!



Complex Case: Descriptor Form Models, Index 3 DAE

• index 3 Differential Algebraic Equations (DAE)

• (*) reducible to index 1 DAE (by 2 differentiations)

with invariants
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e.g. closed kinematic loops - changing DoF due to contact - natural 
coordinate modeling
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traditional approach time optimal solution
more than twice as fast

(slow motion x5)





Hybrid Models I: 
Discontinuous Dynamics



Discontinuous Dynamics

Mathematical problem:

• right hand sides of DE (source terms) have state-dependent 
discontinuities, e.g.,

• i is integer variable! x, z, u, p may change spaces if i changes

• origin: multi-scale processes, discontinuous modeling of fast time 
scales

• physical reasons: e.g. automatic electrical switches or
transmissions, opening or closing of valves, multiple phases (gas-
liquid), mechanical contact events, closing kinematic loops, etc.
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Example: Control of a Distillation Column



Grafik einfügen!

Distillation columns are
energy guzzlers!

• 7% of total energy in the US

• 70-80% of energy 
consumption at BASF site

Distillation columns are
"energy guzzlers"!



Control of a Distillation Column: Problem

• separate ternary 
mixture by conti-process

• minimize energy during
start-up phase –
transition to steady state 
operation

• principal operation: 

• fill column with inert 
gas, heat, then add 
mixture

• controls: feed streams, 
reflux ratios, heating, 
cooling



Control of a Distillation Column: Model

detailed physical model 
of gas liquid mixture

• temperature and 
pressure dependent 
phase transitions

• Antoine kinetics, phase 
specific densities

• non-differentiable 
dynamics at weir 
overflow

• 1012 state variables, a 
priori unknown switching 
structures

single tray



Control of a Distillation Column: Result

• constraints on 
purities,  pressures, 
temperatures, 

• energy reduced by 
30 % compared to 
heuristic operation 
(constant heating)

• start-up phase 
reduced from 45 to 30 
minutes

• over 300 
discontinuities: phase 
changes and weir 
overflows

single tray

Brandt-Pollmann '04



Hybrid Models II: 
Mixed-Integer Optimization and Optimal Control



Mathematical problem:

• in addition, controls u(t) are functions with integer values!

• origin: multi-scale processes

• physical reasons: e.g. optimal control of gears or on-off switches, 
opening or closing of valves, etc. modeled as discrete decisions

Mixed Integer Optimal Control
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Mixed Integer Optimal Control

Principal solution methods:

Direct methods: 
• piecewise constant discretization  of control functions 
• on time grid t0 < t1 < ... < tN = T

Classical approach (MINLP): Branch & Bound, Outer Approximation              
– NP hard w.r.t. N

New approach: combine functional analysis arguments (convexification 
of velocity space, bang bang principle) with numerical approximation 
schemes – orders of magnitudes faster

Sager '06, Sager, B., Reinelt '08



Example: Automobile Test Drive Problem



Automobile Test Drive Problem (Gerdts '05, '06)

Problem: ODE model for planar motion of an automobile

• 7 state variables, 4 controls
– brake, accelerator position, steering wheel (continuous)
– gear shift {1,2,3,4,5} (discrete)

• test problem 1: time optimal control, state constrained parcour 

• results!

Kirches, Sager, B., Schlöder '08
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Automobile Test Drive Problem

• test problem 2: time optimal control, state constrained ellipsoidal
race track, periodic solution                                   (Kirches, Sager '08) 



Automobile Test Drive Problem (Kirches '08)




Challenges and Open Problems

• existence theory, estimates of # of switching points of controls 
and state equations

• sufficient optimality conditions including state constraints

• sensitivity and bifurcation analysis of parametric problems

• efficient algorithms for general class of hybrid problems

• computation of feed-back controls, generalizations to PDE



Requirements of Real-Time Optimization



Mathematical problem:

• real process deviates from model behaviour, 

• needs optimal feedback control u(x*(t0)) 

• that responds as fast as possible to perturbations x*(t0)
of states

• "look ahead strategy": from the given perturbed state x*(t0)

• solve a predictive optimal control problem 

• for a "moving prediction horizon T"

• based on the nonlinear dynamical model

• choose first instant of optimal control as feedback control

NMPC: Nonlinear Model Predictive Control



NMPC: Nonlinear Model Predictive Control

• detailed model allows prediction
and optimization
• but must solve optimization 
problem repeatedly 
• fast enough

look ahead strategy:

Mathematical challenges:
• minimize control response time to 
perturbations 
• need to solve many neighboring 
problems very fast



Mathematical Progress: 
from Minutes to Microseconds

Classical approach:
• whenever new state estimates are available

• start a fast Newton-type method like SQP that successively  
solves approximating quadratic programs
• iterate to convergence (?), and then apply control solution to 
real process

• New nested "real-time iteration" approach:
• iterate continually – dovetailing the progress of dynamical 
process and optimization iterations
• redefine optimization method such that in each iteration 
gradients, Hessians, quadratic programs can be computed as 
far as possible without knowing new states
• insert actual state value at end of iteration and apply control 
response immediately



Distillation
column (with 
Univ. Stuttgart)

NMPC Applications

Polymeri-
sation 
reactor (with 
BASF)

Chromatographic
Separation (with 
Univ. Dortmund)

Combined
Cycle Power 
Plant (with 
Univ. Pavia)

PET plant:  Plant 
wide control project
(with Politecnico di 
Milano)

PREDIMOT, car engine control
(with Univ. Linz, Stuttgart, 
Politecnico di Milano)

Looping kites
(with
politecnico di
Torino)

Oscillating 
chains test
problem

Robot arms
(with Columbia
Univ.)



Example: Wind Power Generation Kites



Wind Power Generation Kites

Principle: use kites as alternative to wind mills

• power is generated when kite pulls out 

• power is invested when kite is pulled in 

Model considers: 

• kite: lift, drag, and attitude

• wind shear and air density

• cable: elasticity, sagging, and drag

• periodicity, state and control constraints

Diehl, Ilshöfer, Houska '06



 

maximum power periodic orbit:

• for a kite with area of 500 square meters and wind speed of 10 m/sec:

• optimal cable length: 1200 to 1300 meters

• optimal cable diameter 6.7 cm

• optimal cycle time 19.9 seconds

optimal average power production is 4.898 MW!

(for two kite system: up to 14 .13 MW!)

Wind Power Generation Kites



Wind Power Generation Kites

Optimal start-up trajectory into optimal periodic orbit without perturbations




Wind Power Generation Kites: NMPC

NMPC:

• tracking of periodic orbit under perturbations

• mild: random wind +/- 2m/sec

• strong: side wind gust 20 m/sec for 5 sec

• prediction horizon 10 sec

• sampling time: 1 sec 

• real time iteration response time below 1 msec



Wind Power Generation Kites: NMPC




Wind Power Generation Kites: NMPC




Challenges and Open Problems

• "convergence" is unsuitable term under real time constraints

• so are "feasibility" and "optimality" 

• proper analysis must rely on realistic measures of contractivity and 
asymptotic stability

• algorithm control must rely on error analysis and adaptivity

• almost completely lacking: analysis of different time scales of 
process and solution algorithms 



Optimum Experimental Design for Dynamical 
Processes



Mathematical problem: 

• determine parameters p and state variables x to minimize 
deviation from measurements η for suitable norm (e.g. weighted 
l2, l1, hybrid)

• such that model equations and additional “experimental 
constraints” are satisfied 

Constrained Parameter Estimation Problem
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Constrained Parameter Estimation Problem
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DAE process model



Assessment of Statistical Error of Estimate

• good fit is not enough!

• must assess uncertainty of state and parameter estimate X*(e) 
- prediction quality! - depending on measurements errors, e.g.

• accuracy of parameter and state estimate given up to first order 
by a generalized inverse J+, resp., covariance matrix C
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Example: Enzyme Reaction Kinetics



Enzyme Reaction Kinetics

• enzymes = industrial biocatalysts
• expensive evaluation of long-term stability behavior
• in practice: many expensive experiments are carried out

D

UN
NUk

UNk

NDk
UDk

N: native enzyme 

U: unfolded enzyme

D: deactivated enzyme



Enzyme Reaction Kinetics

• 4 state variables, (non-linear) Arrhenius kinetics 

• 8 unknown reaction rate parameters p 

• 1 control function u(t): temperature

• 1 indirect measurement device only: amount of base added to 
neutralize acid production (side-reaction)

• wanted: stability quantities "total turn-over", "half-life"

• will see: problem very ill-conditioned, cannot estimate parameters 
from a single "standard" experiment



Experiments with Candida Antarctica on Ionic Resin 
(“Novozym”)

• estimated values of parameters ± standard deviations after one 
standard experiment

• fit looks okay, but ...

• ... parameter estimates mostly useless



Can We Optimize Experimental Conditions to 
Improve Accuracy?

aim:  

• choose optimal experimental conditions ξ = (u, q, w)

• u: control functions: temperature profiles, feed-streams,

• q: control parameters: volume, initial conditions, 

• w (integer!): sampling design: measurement devices and times

• maximize information gain, here: minimize 
uncertainty of resulting parameter estimate

• subject to state, control and parameter constraints, e.g.

• costs, safety, feasibility (shifts), domain of model validity (!),...

cost 
function



Example: Calibration of Robots



Example: Calibration of Robots

• off-line programming of robots requires precisely calibrated models

• dynamic parameters (e.g. inertias) and kinematic parameters only 
approximately known 

• high repetition accuracy, but different for individual robots 

• simplest case: identify 2 inertial parameters for SCARA robot from 
position measurements of tool center point



Example: Calibration of Robots

Result: one additional optimal experiment improves parameter 
accuracy  by one order of magnitude - equivalent to 99 repetitions 
of original experiment!

1st experiment 2nd optimized experiment

very high optimization potential indeed!





Optimum Experimental Design is a Complex
Non-Standard Optimal Control Problem

• improve accuracy of estimate by minimizing a function                            
of the covariance matrix

• subject to model equations, state and control constraints

• cost function
– already involves 1st order derivatives of model
– implicity defined via a generalized inverse 
– non-separable - no Pontryagin's maximum principle
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e.g. Kiefer, Wolfowitz, Box, Draper, Pukelsheim, ...



Optimum Experimental Design
for Discrimination between Model Candidates

• design experiments to reject models by lack-of-fit test

• leads to complex multiple experiments, multiple models optimal
control problems 

• to maximize "difference" between predicted measurements of model 
candidates

• but fortunately "standard" cost functions, and highly structured

e.g. Dieses '97, Hoffmann '06

e.g. Fedorov, Atkinson



Numerical Methods for                                      
Optimum Experimental Design 

• direct approach: discretization of control problem
• RSQP solution of constrained NLP, exploitation of structures 
• efficient evaluation of 1st and 2nd derivatives

• sequential approach: generate sequence of optimized 
experiments, exploit information of the previous

• robust "worst case" optimum experimental design: make 
experiments insensitive to parameter uncertainties

Körkel, B., Kostina, Schlöder '04

Bauer, Körkel, B., Schlöder '98, '02

VPLAN/OPTEX



Experiments with Candida Antarctica on Ionic Resin 
(“Novozym”)

• 1, 2, 3 or 4 simultaneously optimized experiments do not allow to 
identify all reaction rate coefficients up to an order of magnitude

• this application requires 5 simultaneously optimized experiments!

estimated values of rate coefficients and standard deviations
after parameter estimation from experimental data



Experiments with Candida Antarctica on Ionic Resin 
(“Novozym”)

• the 5 "simultaneously optimal" temperature control profiles:

• plus 5 additional "simultaneously optimal" profiles

• initial ("standard") temperature control profile 



Experiments with Candida Antarctica on Ionic Resin 
(“Novozym”)

• computational results also deliver good fit:



Robust Optimum Experimental Design
Aim: Reduce Sensitivity w.r.t. Parameter Uncertainty



Robust Optimum Experimental Design
problem: parameters p only known up to - large - confidence region!
• desirable: worst case design - expensive!

• approach chosen: 1st order approximation 

• yields "robust" cost function and constraints (γ, Σ "natural" weights)

• generalizes to general optimization problems under uncertainty
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Körkel, B., Kostina, Schlöder '00, '04

Diehl, B., Kostina '06



Enzyme Kinetics: Robust vs. Nonrobust Design

• simplified reaction scheme
• sequential design for 4 reaction rate coefficients
• pseudo measurement data generated by numerical experiments

"true" first estimate

the first "expert", but non-optimized experiment



Enzyme Kinetics: Robust vs. Nonrobust Designs

• parameter estimation for one initial experiment followed by 
• sequence of one additional optimal experiment after another

9 nonrobust                    3 robust

conclusion: enormous potential - drastic reduction of experimental costs



Challenges and Open Problems

• rich and well advanced theory of optimum experimental design for
linear models (from Kiefer and Wolfowitz to Draper, Fedorov, and 
Pukelsheim)

• hugh potential, but practically no theory for nonlinear dynamical 
processes available

• also more efficient numerical methods needed 
– more general problem classes, e.g., hybrid systems
– on-line optimum experimental design problems
– incorporation of OED in real time state and parameter estimation

• very high relevance in industrial applications, 
BASF donates 200 k€/year for a Junior Research 
Group in OED at the new Graduate School of IWR



Summary

• detailed models provide the engineers with a powerful tool to 
optimize and control complex dynamical processes

• potential can only be realized by powerful new mathematical 
methods, 
– neither by trial and error, 
– nor by sophisticated heuristics, 
– nor by textbook mathematics

• there is a wealth of engineering problems in industry and 
technology waiting for new analytical and computational methods



and maybe the cow 

will learn to fly!
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